

Science at synchrotrons and the ESRF EBS

Francesco Sette

ESRF, 71 Avenue des Martyrs, Grenoble 38043 – France

UNDERSTATING CONDENSED AND LIVING MATTER FROM THE SINGLE ATOM

X-ray science and tomorrow's challenges

Challenges and Objectives of Storage Ring and XFEL sources:

- Explore from the extremely fast: FEMTO-SECOND SCALE
- Explore from the extremely small: NANO-WORLD
- New tools to investigate condensed and living matter, bridging gaps and complementing optical and electron microscopies
- News tools to answer the pressing technological, economic, health and environmental challenges facing Society.

New, better science

New and innovative materials

Health & life sciences

Energy and Environment

> A new paradigm for beamlines and source: ESRF Upgrade Programme and ESRF-EBS

ESRF UPGRADE PROGRAMME: AN AMBITIOUS PROGRAMME TO PREPARE THE FUTURE

Purple Book January 2008

Orange Book January 2015

ESRF UPGRADE PHASE I 180 M€ (2009-2015): ESFRI ROADMAP 2006-2016 IN TIME – WITHIN BUDGET

- 19 new beamlines, many specialised on nano-beam science
- Upgrade and renewal of facilities and support laboratories

ESRF-EBS
Extremely Brilliant Source
150 M€ (2015-2022)
ESFRI LANDMARK (2016)

revolutionary design for a new generation of synchrotron source storage rings

ESRF UPGRADE PROGRAMME

ESRF Upgrade Programme

- A factor of ~100 increase in brillance and coherent flux of the X-ray source
- A conceptually new storage ring
- A complete renewal of the « beamline » portfolio and of the users' support facilities adapted to the new research opportunities

But also: MAX IV, SIRIUS And soon SPRING8-II, APS, DIAMOND-II, etc.

NEW ESRF LATTICE: 7BA – SEVEN BENDS ACHROMAT LATTICE (RAIMONDI LATTICE)

Key Paramaters

7BA lattice Energy 6 GeV Current 200 mA ϵ_x 100 pm rad ϵ_z 4 pm rad

2 M IVUS & CPMUS

IVUN22 min. gap 6 mm, K_{max} =1.7 CPMU14.5 min. gap 4 mm, K_{max} =1.7

Photon Energy

2 M IVUS & CPMUS

2 M IVUS & CPMUS

ESRF UPGRADE PROGRAMME – ESRF EBS (2015-2022)

Girder prototype tests: 128 girders construction started

Girder prototype with dummy magnets for mechanical tests

First vibrational mode at 40 Hz

Virtually no amplification of natural ground motion

ESRF UPGRADE PROGRAMME – ESRF EBS (2015-2022)

Magnets: more than 1 000 magnets construction started

ESRF UPGRADE PROGRAMME – ESRF EBS (2015-2022)

Vacuum chambers: more than 450 chambers construction started

ESRF EBS MASTER SCHEDULE (2015-2022)

Accelerator Master Plan and Major Milestones

EBS ON ESRF BEAMLINE PORTFOLIO: IMAGING BEAMLINES

EBS ON ESRF BEAMLINE PORTFOLIO: IMAGING BEAMLINES

Main Conclusions

Imaging beamlines mostly on low- β straights (wiggler and undulator sources)

moderate to very high gain - no gain on wiggler sources

high gain in flux and flux density (undulator sources)

very high gain in coherence F_c ~ B

EBS ON ESRF BEAMLINE PORTFOLIO: DIFFRACTION BEAMLINES

EBS ON ESRF BEAMLINE PORTFOLIO: DIFFRACTION BEAMLINES

Main Conclusions

Diffraction beamlines mostly on low- β straights

high gain in flux and flux density

very high gain in coherence F_c~B

ideally suited for the production of *nano*-beams

EBS ON ESRF BEAMLINE PORTFOLIO: SPECTROSCOPY BEAMLINES

EBS ON ESRF BEAMLINE PORTFOLIO: SPECTROSCOPY BEAMLINES

Main Conclusions

Spectroscopy beamlines mostly on high- β straights

moderate gain in flux

moderate to high gain in flux density

ideally suited for the production of *nano*-beams

SUMMARY EBS ON ESRF BEAMLINE PORTFOLIO:

Today, limitations in:

- Brightness → ~95% loss in *nano*-beams
 - Coherence → 0.2% at 10 keV

Increased brightness and coherence:

- Smaller source size
- Larger working distance for given beam size
- Resolution beyond the limits of beam size

Increased flux and flux density

Higher time resolution

WHERE DOES THIS PLACE SR BASED TECHNIQUES?

STEM in liquid

Peckys et al, *Biophys. J.* 100, (2011)

Electrons

Limitations in imaging & spectroscopy for d > 100nm

TEM

"Electron tomography at 2.4 Å resolution", Scott et al., Nature, (2012)

The European Synchrotron

Tremendous gain in brilliance, flux, and coherence!

ID10: x 40 in coherent flux (soft matter BL)

ID16: x 30 in flux at ultimate 10nm focus (imaging BL)

ID29: x 10⁵ in flux density at the sample (MX BL)

ID31: x 10³ in focused high E beam (materials processing BL)

•••••

We are starting to fill that gap......

ESRF UPGRADE PROGRAMME: SCIENCE CASE

mposite)

Revolutionizing life sciences at the ESRF: from serial crystallography to molecular machines in functional biological cells

Structure and Dynamics of Functional

Biological Units

Revealing the hidden treasures of Nature with a diffraction-limited Xray Source

Earth & Planetary Science, Novel states of matter

Time-resolved bio-response of organisms to exogenous materials

Bio-regeneration, Evolutionary

Biology Materia

Purple Book January 2008

New, better science

Nanoscience and nanotechnology Diffraction-limited sources: opportunities for in-situ studies

Energy S Catalysis Material

Orange Book **January** 2015

5D diffraction imaging of electronic devices and nanostructures

Nanotechnology, Information technology, Quantum computing

INTERACTIONS IN/BETWEEN BIOLOGICAL SYSTEMS

Opportunities in biological systems

- Probing the bioresponse to exogenous materials with ultimate sensitivity and resolution
- Multiscale analysis of heterogeneous materials
- Low-dose *in vivo* tomography of living organisms

One of the big challenges for our aging societies: Degenerative diseases Alzheimer's disease, Parkinson's disease

Copper pathology in vulnerable brain regions in Parkinson's disease

Limitations	Solution	
spatial resolution	higher brightness	
detection limit	higher brightness	
radiation damage	better detectors	
data analysis	IT and software	

Davis et al. 2014, Neurobiology of Aging

NANOSCALE XRF ELEMENTAL MAPPING

Sub-cellular label-free localization of anti-malarian drugs

Malaria:

CJL Murray et al., Lancet 2012; 379: 413

- 3-500 million clinical cases per year
- ~1.2 million deaths (mostly children under five)

ANTI-MALARIAL DRUGS

Quinine **Primaquine** Chloroquine H_2C CH₂ а New class of anti-malarial drugs HN HN CQ FQ RQ $IC_{50} = 41.5 \pm 11.2$ $IC_{50} = 13.1 \pm 1.7$ $IC_{50} = 18.7 \pm 3.9$ HO₂ HN HN CH₃ CH₃ ĊF₃ 1948-1980 1977-1982

SUB-CELLULAR LABEL-FREE LOCALIZATION OF ANTI-MALARIAN DRUGS

Synchrotron *nano*-probe techniques contribute to the localization of new drugs and to the elucidation of their action mechanisms.

ESRF *nano*-probe ID22NI-ID16B 50 nm pixel, flux $\sim 5 \cdot 10^{11}$ ph/s $E_0 = 17 \text{ keV}$, 100 ms dwell-time

Simultaneous acquisition of the **fluorescence signature of most elements of biological interest**

Fe fluorescence in malaria infected red blood cell

F Dubar et al., Chem. Comm. 48, 910 (2012)

SUB-CELLULAR LABEL-FREE LOCALIZATION OF ANTI-MALARIAN DRUGS

Localization of a new drug candidate Ruthenoquine (Ferroquine equivalent)

Ferroquine bound to
Hemozoin (Hz) crystal
ACS Chem Biol, 2011, 6, 275

 E_0 =29 keV

STRUCTURAL AND FUNCTIONAL BIOLOGY

Opportunities at cellular and molecular levels

- Room temperature serial protein crystallography of microcrystals
- High resolution imaging of cells and probing protein structural dynamics during physiological activity

Limitations	Solution	
spatial resolution	coherence	
radiation damage	better detectors	
data analysis	IT and software	

Serial crystallography (SX):

Assembly of a complete dataset from multiple images

or sub-datasets, usually from many crystals

- Much higher effective doses possible
- Less optimisation of crystal size
- No crystal harvesting:

Harvesting (without a robot) is a significant bottleneck Handling can damage crystals

- Kinetics: optical pump probe and stopped flow
- Microcrystals are better for:

Soaking – diffusion through small crystals is much faster

Optical penetration depth

Schmidt, M., "Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography", Adv. Condens. Matter Phys.

Substrate

Damage free

fs X-ray pulse

SX AT THE ESRF

Membrane-Protein
Serial Micro-Crystallography
using
Synchrotron Radiation
and a
Liquid Cubic Phase Injector

MICRO-BEAM LCP-INJECTOR SETUP AT ID13

micro-beam 13 keV, 8x10¹¹ ph/sec 3x2 μm² (FWHM HxV)

liquid cubic phase (LCP) injector in operation

- pressurized via HPLC pump
- helium mantle stream
- LCP-jet with 50 mm diameter
- velocity of LCP-jet: 100 mm/sec

Weierstall et al.: Nature Communications (2014) 5, 3309

BACTERIORHODOPSIN MICRO-CRYSTAL FLY-BY IN 3 SUBSEQUENT FRAMES

Average travel per 25 ms exposure: $2.5 \, \mu m$ Crystal detected in 3 subsequent frames >> crystal size ~ 30 $\, \mu m$ (preliminary evaluation: Typical hit rate in the percent range limited by overhead and crystal concentration)

Foreseen for Summer 2016 at ID13: EIGER 4M pixel array detector for quasi-continuous exposure @ 750 Hz 80-90 % of the sample could be used ESRF storage ring upgrade << µs exposure possible

BACTERIORHODOPSIN STRUCTURE REFINEMENT FROM SERIAL DATA

Preliminary data analysis and structure refinement of Bacteriorhodopsin membrane protein test crystals from synchrotron LCP-jet serial data at ID13 (electron density map current resolution 2.7 Å)

Acknowledgement:

- R. Neutze (Gothenburg unniv., S):
- I. Moraes (Imperial college, Diamond Light Source, UK), Weierstall et al. (Arizona State University, USA): LCP-injector G. Schertler, J. Standfuss et al. (PSI, CH),
- H. Chapman, T. White T., et al (Desy/Petra/C-FEL, D)

SYNCHROTRON SERIAL CRYSTALLOGRAPHY (SSC) EFFORTS AT THE ESRF

Liquid cubic phase injector

Injectors

Modly of al /2015\ IIICri 2 160 176 /ID12\

Current

Mini oscillation techniques (Zander *et al.,* 2015) Capillaries (Stellato *et al.,* 2014) Si "Sandwiches" (Coquelle *et al,* 2015) Cubic lipidic phase injector (Nogly *et al.,* 2015) Grease Injector (Botha *et al.,* 2015)

Future

Fluidic chips (Heymann *et al.*, 2014) In vacuum (Warren *et al.*, 2015)

Multi-crystal workflows

r, et al., (2015). Trystallogr D Biol Crystallogr 71

SYNCHROTRON VS. XFEL VS CRYOEM

	FEL	Synchrotron SX	CryoEM
Mol. Weight (Da)	1->mega	1->mega	~100 kD->mega
Resolution	+++	+++	+
Crystal size	Nano-micro Eventually: NA (single particle)	Micro	NA: No crystallization necessary
Pump probe time resolution	fs	ms, μs	NA
Maximum dose	Up to GGy/position?	Up to 20 MGy per position at cryo (less at ambient)	~20MGy, cryo

SYNCHROTRON VS. XFEL VS CRYOEM

	FEL	Synchrotron SX	CryoEM
Experiment length	Fixed target: minutes Jet: hours	Fixed target: minutes Jet: hours	Hours
Pump probe time resolution	fs	ms, μs	NA
Detector maturity	+	+++	++
Sample preparation	Difficult: Crystallisation	Difficult: Crystallisation	Difficult: Grid prep, freezing
Instrument cost and availability	+++	+	++
Phasing	In development	Highly mature	Optical phases
Sample consumption	Jet: high	Jet: high	low
Required compute resources The Free Electron Laser for Ultrafast Imaging at the Nanose	++ cale ERICE 6-10 June 2016 Francesco Sette	+	+++

SPECIFIC AREAS FOR IMPROVEMENT IN SYNCHROTRON AND XFEL SX

Flux – EBS!

Faster transit times for crystals, ms->us

Faster dynamics studies, ms->us

Sample

High speed motorisation (

In vacuum collection

common development efforts Optical pump probe setups, chemical mixing

Many opportunities for

Detectors

Readout rate

"Hybrid" technologies with no count rate limitations

Pixel size adapted to micro/nano crystals

Improved dynamic range at high frame rate

DIFFRACTION FROM MUSCLE CELLS

V. Lombardi *et al.,* Florence

Linari *et al. PNAS*, **97**, 7226 (2000) Piazzesi *et al. Nature*, **415**, 659 (2002)

Riconditi et al. Nature, 428, 578 (2004)

Brunello *et al. PNAS*, **104**, 20114 (2007)

Riconditi *et al, PNAS,* **108**, 7236 (2011)

Linari *et al. Nature*, **528**, 276 (2015)

Interference fine structure: Time-resolved studies under physiological conditions

LENGTH DEPENDENT ACTIVATION OF THE CARDIAC MUSCLE

Frank-Starling Law of the heart: the force during contraction (systole) is adapted to the volume at the end of the relaxation (diastole)

Picture of a mammalian heart showing the interior of the right ventricle.

Probing the molecular mechanism underlying this property of the heart

DIFFRACTION FROM THE CARDIAC MUSCLE

Small-Angle Diffraction from Cardiac Muscle Trabecula (~100 μm) of Rat

V. Lombardi (Florence), G. Stienen (Amsterdam), et al.

DIFFRACTION FROM THE CARDIAC MUSCLE

Ultra low angle diffraction reveals changes at the sarcomere (unit cell) during the activation and probe the supramolecular organization within

Allows to derive the force-sarcomere length relationship and to observe significant changes in the supramolecular organization

LENGTH DEPENDENT ACTIVATION OF THE CARDIAC MUSCLE

LETTER

Nature 2015

doi:10.1038/nature15727

Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments

Marco Linari^{1,2}, Elisabetta Brunello¹†, Massimo Reconditi^{1,2}, Luca Fusi³, Marco Caremani¹, Theyencheri Narayanan⁴, Gabriella Piazzesi¹, Vincenzo Lombardi¹ & Malcolm Irving³

Dual filament mechanism:

OFF/ON states of myosin motors

Mechanosensing action:

More motors turned on at high load

The same mechanism seems to work in the cardiac muscle

IN-SITU MATERIALS CHEMISTRY & MATERIALS PROCESSING

Opportunities in In-situ material chemistry

- Materials chemistry for devices to solve grand challenges in clean energy provision and transport
- A 'chemically resolved X-ray vision' on working catalysts and devices for a green energy economy
- Understanding and optimising complex devices on realistic time scales

new materials: characterisation

Ni-Co-Mn compounds for electrodes

LiFePO₄ cathode material

device development: in-situ studies

Limitations	Solution
spatial resolution	brightness
time resolution	brightness
penetration	high energy
data analysis	IT and software

NANOMATERIALS FOR TECHNOLOGY

Opportunities

- In situ imaging of strain and chemical composition in biocompatible sensors
- Example 2 Device imaging and failure analysis under operating conditions: from solar cells to quantum computers
- Three dimensional imaging of nano-electronic building blocks

Strategy for European
Semiconductor Industry:
more than Moore

Back-end of line integration of non volatile RRAM into a SiGe BiCMOS chip technology for system on chip solutions

Quantum computing device Evans et al. (2012) Advanced Materials

Limitations	Solution
spatial resolution	coherence
strain resolution	coherence
time resolution	brightness
data analysis	IT and software

ID16B

Beamline Synopsis:

ID16B is a versatile *hard X-ray nanoprobe* devoted to X-ray nano-analysis, consisting of the combination of X-ray fluorescence, X-ray diffraction, X-ray absorption spectroscopy and 2D/3D X-ray imaging techniques.

Beamline Team:

Gema Martinez-Criado

Julie Villanova

Remi Tucoulou

Sylvain Laboure

Damien Salomon

Jussi-Petteri Suuronen

ID16 NANOPROBE

ID16B-NA: nanofocus multimodal beam for nano-analysis

ID16B-NA 165 m

Beamline Characteristics:

• Beam size: 50 x 50 nm²

• Energy range: 5 - 65 keV

• Photon flux: 10⁹ – 10¹¹ ph/sec

• $\Delta E/E$: $10^{-2} - 10^{-4}$

Beam operation modes: pink and monochromatic

• Techniques: XRF, XRD, XRI, XAS, XEOL, XBIC

• Studies: in-situ, in -operando & time-resolved experiments

ID16B METHODS

Local Structural Order

(interatomic distance, coordination) **EXAFS**

ID16B: COMBINATION OF DIFFERENT TECHNIQUES

GaN: the heart of the Nobel's Led

Akasaki, Amano & Nakamura: 2014 Physics Nobel Laureates

NANO-XEOL OF GAN

NANO-X RAY BEAM INDUCED CURRENT: XBIC

A GaAs quantum dot in a Si nanowire!

NANO-X RAY BEAM INDUCED CURRENT: XBIC VERSUS VOLTAGE

- current measured while scanning the X-ray nanobeam on contacted wire
 - blue-to-white: current signal (on log colour scale)
 - red: Ga, green: As (from fluorescence mapping)
- bias voltage on contact
- current signal
 - intense at the hetero-junction
 - the vertical and horizontal lines are from the beam
 - the top-left to bottom-right diagonal is from current induced in the Si wire
 - in the top left corner is the contact

ID16B: USERS EXPERIMENTS

Phase-Change Memories (PCM)

Ge2Sb2Te5 system

By Gisuseppe D-Arrigo at al. Institute of Microelectronics and Microsystems, CNR, Catania, Italy

Single GST line

Iterations of SET and RESET: segregation effects, ions migration, etc.

QUICK RECIPROCAL 3D MAPPING (K-MAP) FOR STRAIN/TILT IMAGING

ESRF logo etched by FIB > ID01: nanofocused beam (150 nm x 300 nm) into a SiGe film on Si(001) Detector 90 µm Piezo Stage ➤ ID01: quicK-MAPping (K-MAP) Detector Controlling One command line PC Sample card stage Millions of images and counters in few hours continuous mode

K-MAPPING FOR DEVICE COMMUNITY

Mondiali et al. Applied Physics Letters

POLITECNICO DI MILANO

Capellini et al. J. Appl. Phys. (2013)

FIRST USER EXPERIMENT: IN-SITU BENDING OF AN AU NANOWIRE

>Top view of Si (001) trenches and a Au NW (150 nm x 30 μ m) with:

ID01 optical microscope

AFM mounted at the ID01 diffractometer

First measurements done by T. Cornelius, M.-I. Richard, G. Chahine, O. Thomas

> Reciprocal space maps before, during and after *In-situ* bending:

(111) Bragg peak of a suspended Au NW (~2s/frame):

3D Bragg peak (energy scan ~100 eV) bending with

During

qx (nm⁻¹)

bending

MATTER AT EXTREME CONDITIONS

Opportunities

- Frobing structural complexity and its relation to, e.g. superconductivity and quantum phenomena
- Imaging materials complexity in the TPa regime at the nanoscale
- Understanding the structure and dynamics of Earth's and Exo-planets deep interiors

Creating thermodynamic conditions that exist only in a very small volume and/or for a very short time

Limitations	Solution
beam size	brightness
time resolution	brightness
data analysis	IT and software

A STRONG COMMUNITY EFFORT AT ESRF

Accuracy of the P-T measurements Ruby scale Diamond or c_BN scale Pyrometry

ESRF

Many techniques have been used. Some dedicated beamlines. XRD, XAS, IXS, NSR, XRI

= interesting physics.

Study of a material at Mbars pressures completely and accurately as at ambient pressure

Major achievement of the HP field!

SOME RECENT HIGHLIGHTS

Single-crystal XRD

Spaulding, Nature Comm. 2014

NRS

Troyan, Science 2016

PUSH THE FRONTIERS

Go more extreme. TPa & eV WDM

- Explore the time scale of high pressure phenomena
- Mechanism and nucleation of phase transitions.
- Yield strength (dynamics of dislocations).
- Nanostructuration; amorphisation; metastable phases.

GOING BEYOND THE LIMIT OF STATIC COMPRESSION

Static compression with LH–DAC covers Earth's core conditions

~ 360 GPa, 5500 K

- 1. What is the stability limit of hcp phase in solid Fe?
- 2. What is the local structure in the liquid?
- 3. What is the nature of ion-ion correlations in the WDM regime?

Can we create and probe WDM at the synchrotron, with data quality as "at ambient"?

DYNAMIC COMPRESSION WITH LASERS

From macroscopic properties to atomic structure → X-ray diagnostics

High power laser facility

+ X-ray backlighter

- X-ray scattering, XRD, XAS, XES
- Phase transitions, new structures, WDM electronic and structure changes, etc...
- Test approximations used in theories

DETECTION LIMITS FOR SINGLE SHOT STUDIES: ED-XAS

data quality corresponds to 50 spectra before

Ge XH microstrip (STFC)

SINGLE SHOT EXAFS ON DYNAMICALLY COMPRESSED FE

I(W/cm²)

 $1\ 10^{13}$

2 10¹³

 $3\ 10^{13}$

 $5 \cdot 10^{13}$

P(GPa)

160

270

320

370

3.5 370 GPa 9000K 3.0 2.5 absorption 1.5 1.0 ambient 0.5 0.0 7150 7100 7200 7250 Energy (eV)

F. Occelli, O. Mathon, A. Sollier, R. Torchio, et al.

Single bunch XANES

Single bunch EXAFS

T(K)

2800

7000

8000

10000

XAS STUDIES ON LASER SHOCKED FE

High Power Laser Facility X-ray Free Electron Laser **OMEGA**

single shot

LCLS

average over many shots

Synchrotron **ESRF**

single shot

Only EXAFS region Max 10 shots/day Max 2 days/year

Only edge region No. shots limited only by laser frequency

XANES and EXAFS No. shots limited only by laser frequency

SINGLE BUNCH IMAGING AT SYNCHROTRONS

Mechanical properties, phase transitions and chemistry under high strain rates

IMPULSE gas gun @ DCS, APS (Argonne, USA) - Courtesy B. Jensen, LANL

Imperial College gas gun @ ID19, ESRF - Courtesy A. Rack (ESRF)

ESRF UPGRADE PROGRAMME PHASE I: UNIQUE DISCOVERY INSTRUMENTS AS THE ID32 RIXS

UPBL7 on ID32

Nano-magnetism & Spectroscopy

INELASTIC X-RAY SCATTERING: UNIQUE INFORMATION IN CONDENSED MATTER PHYSICS

RIXS-ID32: COMMISSIONING OF THE HIGH ENERGY RESOLUTION CONFIGURATION IN FALL 2015

Commissioning the High Resolution Set-up: November 2015

RIXS-ID32: COMMISSIONING OF THE POLARISATION ANALYSIS OF THE SCATTERED LIGHT

Polarimeter discriminating the σ - σ and σ - π scattering channels

- Excitations with or without spin/orbital –momentum flips
- Novel design conceived and realised at the ESRF by the joint PoliMi-ESRF Team

Neodimium-Barium-Cuprate parent compound of high Tc Demo of polarimeter in ERIXS at ID32 Measured for 7 hours

NBCO antiferro, Normal emission, 2th=140, delta=-20, T=30K. q = --0.18 rec.latt.units

April 2016, L. Braicovich, N. Brookes, G. Ghiringhelli and the ESRF-ID32/PoliMi Team

ESRF UPGRADE PROGRAMME

Thank you for your attention!

